Introduction
OpenAI's text generation models (often referred to as generative pre-trained transformers or "GPT" models for short), like GPT-4 and GPT-3.5, have been trained to understand natural and formal language. Models like GPT-4 allows text outputs in response to their inputs. The inputs to these models are also referred to as "prompts". Designing a prompt is essentially how you "program" a model like GPT-4, usually by providing instructions or some examples of how to successfully complete a task. Models like GPT-4 can be used across a great variety of tasks including content or code generation, summarization, conversation, creative writing, and more. Read more in our introductory text generation guide and in our prompt engineering guide.
Text generation and embeddings models process text in chunks called tokens. Tokens represent commonly occurring sequences of characters. For example, the string " tokenization" is decomposed as " token" and "ization", while a short and common word like " the" is represented as a single token. Note that in a sentence, the first token of each word typically starts with a space character. Check out our tokenizer tool to test specific strings and see how they are translated into tokens. As a rough rule of thumb, 1 token is approximately 4 characters or 0.75 words for English text.
One limitation to keep in mind is that for a text generation model the prompt and the generated output combined must be no more than the model's maximum context length. For embeddings models (which do not output tokens), the input must be shorter than the model's maximum context length. The maximum context lengths for each text generation and embeddings model can be found in the model index.